Ceramic matrix composites (CMCs) are a subgroup of composite materials as well as a subgroup of technical ceramics. They consist of ceramic fibers embedded in a ceramic matrix, thus forming a ceramic fiber reinforced ceramic (CFRC) material. The matrix and fibers can consist of any ceramic material, whereby carbon and carbon fibers can also be considered a ceramic material.
Manufacture
The manufacturing processes usually consist of the following three steps:
- Lay-up and fixation of the fibers, shaped as the desired component
- Infiltration of the matrix material
- Final machining and, if required, further treatments like coating or impregnation of the intrinsic porosity.
The first and the last step are almost the same for all CMCs: In step one, the fibers, often named rovings, are arranged and fixed using techniques used in fiber-reinforced plastic materials, such as lay-up of fabrics, filament winding, braiding and knotting. The result of this procedure is called fiber-preform or simply preform.
For the second step, five different procedures are used to fill the ceramic matrix in between the fibers of the preform:
- Deposition out of a gas mixture
- Pyrolysis of a pre-ceramic polymer
- Chemical reaction of elements
- Sintering at a relatively low temperature in the range 1000–1200 °C
- Electrophoretic deposition of a ceramic powder
Procedures one, two and three find applications with non-oxide CMCs, whereas the fourth one is used for oxide CMCs; combinations of these procedures are also practiced. The fifth procedure is not yet established in industrial processes. All procedures have sub-variations, which differ in technical details. All procedures yield a porous material.
The third and final step of machining – grinding, drilling, lapping or milling – has to be done with diamond tools. CMCs can also be processed with a water jet or a laser.
Ceramic fibers
Ceramic fibers in CMCs can have a polycrystalline structure, as in conventional ceramics. They can also be amorphous or have inhomogeneous chemical composition, which develops upon pyrolysis of organic precursors. The high process temperatures required for making CMCs preclude the use of organic, metallic or glass fibers. Only fibers stable at temperatures above 1000 °C can be used, such as fibers of alumina, mullite, SiC, zirconia or carbon. Amorphous SiC fibers have an elongation capability above 2% – much larger than in conventional ceramic materials (0.05 to 0.10%).[1] The reason for this property of SiC fibers is that most of them contain additional elements like oxygen, titanium and/or aluminium yielding a tensile strength above 3 GPa. These enhanced elastic properties are required for various three-dimensional fiber arrangements (see example in figure) in textile fabrication, where a small bending radius is essential.[2]
Manufacturing procedures
Matrix deposition from a gas phase
Chemical vapor deposition (CVD) is well suited for this purpose. In the presence of a fiber preform, CVD takes place in between the fibers and their individual filaments and therefore is called chemical vapor infiltration (CVI). One example is the manufacture of C/C composites: a C-fiber preform is exposed to a mixture of argon and a hydrocarbon gas (methane, propane, etc.) at a pressure of around or below 100 kPa and a temperature above 1000 °C. The gas decomposes depositing carbon on and between the fibers. Another example is the deposition of silicon carbide, which is usually conducted from a mixture of hydrogen and methyl-trichlorosilane (MTS, CH3SiCl3; it is also common in silicone production). Under defined condition this gas mixture deposits fine and crystalline silicon carbide on the hot surface within the preform.[3][4] This CVI procedure leaves a body with a porosity of about 10–15%, as access of reactants to the interior of the preform is increasingly blocked by deposition on the exterior.
Matrix forming via pyrolysis of C- and Si-containing polymers
Hydrocarbon polymers shrink during pyrolysis, and upon outgassing form carbon with an amorphous, glass-like structure, which by additional heat treatment can be changed to a more graphite-like structure. Other special polymers, where some carbon atoms are replaced by silicon atoms, the so-called polycarbosilanes, yield amorphous silicon carbide of more or less stoichiometric composition. A large variety of such SiC-, SiNC-, or SiBNC-producing precursors already exist and more are being developed. To manufacture a CMC material, the fiber preform is infiltrated with the chosen polymer. Subsequent curing and pyrolysis yield a highly porous matrix, which is undesirable for most applications. Further cycles of polymer infiltration and pyrolysis are performed until the final and desired quality is achieved. Usually five to eight cycles are necessary.[5][6][7] The process is called liquid polymer infiltration (LPI), or polymer infiltration and pyrolysis (PIP). Here also a porosity of about 15% is common due to the shrinking of the polymer. The porosity is reduced after every cycle.
Matrix forming via chemical reaction
With this method, one material located between the fibers reacts with a second material to form the ceramic matrix. Some conventional ceramics are also manufactured by chemical reactions. For example, reaction-bonded silicon nitride (RBSN) is produced through the reaction of silicon powder with nitrogen, and porous carbon reacts with silicon to form reaction bonded silicon carbide, a silicon carbide which contains inclusions of a silicon phase. An example of CMC manufacture, which was introduced for the production of ceramic brake discs, is the reaction of silicon with a porous preform of C/C.[8] The process temperature is above 1414 °C, that is above the melting point of silicon, and the process conditions are controlled such that the carbon fibers of the C/C-preform almost completely retain their mechanical properties. This process is called liquid silicon infiltration (LSI). Sometimes, and because of its starting point with C/C, the material is abbreviated as C/C-SiC. The material produced in this process has a very low porosity of about 3%.
Matrix forming via sintering
This process is used to manufacture oxide fiber/oxide matrix CMC materials. Since most ceramic fibers can not withstand the normal sintering temperatures of above 1600 °C, special precursor liquids are used to infiltrate the preform of oxide fibers. These precursors allow sintering, that is ceramic-forming processes, at temperatures of 1000–1200 °C. They are, for example, based on mixtures of alumina powder with the liquids tetra-ethyl-orthosilicate (as Si donor) and aluminium-butylate (as Al donor), which yield a mullite matrix. Other techniques, such as sol-gel chemistry, are also used. CMCs obtained with this process usually have a high porosity of about 20%.[9][10]
Matrix formed via electrophoresis
In the electrophoretic process, electrically charged particles dispersed in a special liquid are transported through an electric field into the preform, which has the opposite electrical charge polarity. This process is under development, and is not yet used industrially.[11][12] Some remaining porosity must be expec