International Symposium on High Temperature Solar Materials

Porous Materials For High-Temperature Solar Absorbers

Sandro Gianella

Index

- CSP Technologies
 - Line focussing systems
 - Point focussing systems
 - Comparison
 - Scope
 - Global market trends

- High Temperature Absorbers
- Absorber Optimization
- Life Span
- Summary

"Using only 0.1% of the earth's land space with solar collectors that operate with a collection efficiency of merely 20%, one could gather more than enough energy to supply the current yearly energy needs of all inhabitants of the planet (\sim 1.2 x 10¹⁴ kWh)."

A. Steinfeld, A. Meier, Solar Fuels and Materials, Encyclopedia of Energy, Volume 5, 2004, Elsevier

Line focussing systems

Parabolic through

Linear Fresnel

Point focussing systems

Dish

Solar tower

	Parabolic Trough	Solar Tower	Linear Fresnel	Dish-Stirling
Typical capacity (ME)	10-300	10-200	10-200	0.01-0.025
Maturity of technology	Commercially proven	Pilot commercial plants	Pilot projects	Demonstration projects
Operating temperature (°C)	350-550	250-565	390	550-750
Plant peak efficiency (%)	14-20	23-35	18	30
Annual solar-to-electricity efficiency (net, %)	11-16	7-20	13	12-25
Collector concentration	70-80 suns	> 1000 suns	> 60 suns	> 1300 suns
Receiver/Absorber	Absorbers attached to collectors	External surface or cavity receiver	Fixed absorber	Absorber attached to collector

Source: IRENA Report, Concentrating Solar Power, Volume 1, Issue 2/5, June 2012

Scope

Electricity production

Puerto Errado 2, Fresnel CSP Power Station 30 MW , Novatec Solar

Maricopa Dish Stirling Plant, Peoria, Arizona, 1.5 MW

Parabolic-trough power plant, California's Mojave Desert.

PS10 and PS 20 solar towers, Sevilla, Spain

Scope

Energy carriers production

SOLHYCARB reactor, Methane splitting, ETH Zürich

Component tests for SOLHYCARB, PSI

ZnO reactor, Water splitting, ETH Zürich

100-kW scale up reactor, ETH Zürich

Scope

Process Heat

Lavoisier solar furnace, Paris 1772

Solar furnace of Odeillo, Pyrénées-Orientales, France

Solar Process Heat (SO-PRO)

Facts

- Activity re-started after more than 15 years
- By the end of March 2012: 1.9 GW installed CSP capacity
- Leading markets: USA and Spain (90% of current installed CSP capacity)
- Currently dozens of CSP plants in construction
- 20 GW under development worldwide
- Capacity distribution:
 - 1.8 GW parabolic through (94%)
 - 70 MW solar tower
 - 31 MW Fresnel reflector

Source: Photon International, 2009, NREL, 2012, and AEIST, 2012

Global market trends

Source: European Solar Thermal Electricity Association (ESTELA), The First Five Years Of ESTELA Report, 2011

Solar tower, molten salt

Parabolic Dish, stirling engine

Typology

Tube receiver and volumetric receiver concept.

Source: T. Fend, High porosity materials as volumetric receivers for solar energetics, Optica Applicata, Vol. XL, No. 2, 2010

Tube receiver

Solar tower tube receiver

- Metallic tubes (special alloy)
- Steam or molten salt carrier
- Max. 650°C (flow temperature)
- Tube outside temperature < 900°C
- Corrosion and deterioration
- Special coatings

Solar Two in Daggett, California, 10-MW solar thermal electric power plant

Tube receiver

Parabolic dish tube receiver

SES SunCatcher solar receiver

Eurodish receiver material, Solo Stirling GmbH

Metallic tube receiver for parabolic dish.

Volumetric receiver

Solar tower volumetric receiver

Open volumetric receiver HiTRec, DLR

Implementation, KAM, Jülich

Closed (pressurized) volumetric receiver REFOS, DLR and CIEMAT, Spain

Implementation, Plataforma Solar de Almeria, Spain

Volumetric receiver

Open volumetric receiver material

- Si-SiC honeycomb
- Up to 1000°C air temperature achieved
- 80% efficiency from solar to air

Stobbe SiSiC receivers

Volumetric receiver

Open volumetric receiver material

- Diesel particulate filter technology
- Mass product
- Relatively cheap

First commercial open volumetric absorber material, St. Gobain

Volumetric receiver

Closed volumetric receiver material

Decomposition diagram of REFOS receiver

SiC foam as radiation absorber material

Volumetric receiver

Parabolic dish closed volumetric receiver material

- The Porcupine receiver, developed by Karni et all. at Weizmann Institute, Israel
- Cross flow
- SiC foams as absorber material

Parabolic dish receiver by HelioFocus, Israel

Porcupine solar receiver, Weizman, Israel

Porcupine implementation by HelioFocus, Israel

Absorber material importance

- First transformation point, radiation to heat
- Higher absorption + higher transmission to flow →lower LCOE
- Very low cost contribution, big effect

"One of the most promising developments for towers relies on the **development of receivers** that can operate with alternative fluids which can lead to higher operating temperatures."

Source: ATKearney, ESTELA, Solar Thermal Electricity 2025, June 2010

Working conditions

- Resistance up to 1200°C (air)
- Support radiation flux densities >1,000 kW/m2
- Thermal shock resistance (>200 °C/min)
- Thermal cycle resistance
- High thermal conductivity
- High absorptivity
- High surface area
- Low pressure drop
- Low cost
- Long life span

Solar Power Plant, Sevilla, Spain

- Physical, thermal and mechanical properties
- Architecture
- Life span
- Cost

Potential absorber materials

Material microstructure

SEM-images of different Si-SiC microstructures

- Two different sizes of particles homogeneously distributed in fused Silicon
- Microporosity: ~0%
- Passive oxidation layer
- Low crack formation

Material architecture

Honeycombs:

- 2-Dimensional flow
- Hot spots
- Mass product

Foams:

- 3-Dimensional flow
- Better temperature distribution
- Not yet a mass product

Material architecture

Honeycombs

Comparison of measured left.and 2-D interpolation right.thermal maps in °C.of HiTRec-II

Failure of absorber module

Source: B. Hoffschmidt et all., Performance Evaluation of the 200-kWth HiTRec-II Open Volumetric Air Receiver, Journal of Solar Energy Engineering, Vol. 125, 2003, ASME

Material architecture

Foams

IR-Camera analysis of ErbiSiC foams at DLR, Germany

Solar simulation lamps, DLR, Germany

Material architecture

Other architectures

Reticulated Foam (ErbiSiC R)

Filamentous structure (ErbiSiC F)

Custom-designed structure

Material architecture

Custom designed architectures

- Simulate phenomena and operation
- Design best structure
- Produce template with rapid prototyping
- Ceramize

Get best suited architecture

Custom-designed structure produced by Erbicol SA

ErbiSiC

Applications of Si-SiC open-cell materials

- Porous burner
- Catalyst support
- Reforming
- Structural materials
- High-temperature heat exchanger
- Static mixer

Situation

- No accelerated life time test is possible
- Barrier between active and passive oxidation (1400°C)
- Real application conditions are needed

Analysis and prediction

- Main phenomena that influence the life time of foams:
 - Oxidation
 - Crack formation
- Investigate cycled ceramics using:
 - Mechanical analysis: flexural strength and/or compression
 - Mass difference
 - Microanalysis
 - Tomography
 - SEM and SEM-EDS
 - XRD

Analysis

Mass evolution

Passive oxidation layer

Mass gain

R. A. Mach, F. v. Issendorff, A. Delgado A. Ortona, Experimental investigation of the oxidation behavior of Si-SiC-foams Advances in Bioceramics and Porous Ceramics: Ceramic Engineering and Science Proceedings, Volume 29, Issue 7, 299-311, 2009, WILEY

International Symposium on High Temperature Solar Materials, Yeungnam University

> passive oxidation

Analysis

Bending strength

- Decrease in first hours
- Almost constant thereafter

Number of cracks

- First three ON/OFF cycles
- Crack formation decreases drastically

Source: R. A. Mach, F. v. Issendorff, A. Delgado A. Ortona, Experimental investigation of the oxidation behavior of Si-SiC-foams Advances in Bioceramics and Porous Ceramics: Ceramic Engineering and Science Proceedings, Volume 29, Issue 7, 299-311, 2009, WILEY

Long time behaviour

Look at first hours

- Silica layer formation
- Maximal crack formation during first operation hours
- Mechanical strength decreases 30% during the very first hours of operation

- Increase and differentiation of CSP market increases size for solar absorbers
- Absorber material performance is key to LCOE decrease
- Key features of absorbers: high temperature, high absorption, high thermal conductivity, low cost, long life span
- Ceramic open cell materials have potential as solar absorber
- Custom designed structures probably will allow best performance

Avizo

gsv

Sandro Gianella

Managing Director Porous Ceramics Dept.

Erbicol SA Viale Pereda 22 6828 Balerna Switzerland

Phone: 0041 (0)91 697 63 60 Fax: 0041 (0)91697 63 69 Mail: sandro.gianella@erbicol.ch Web: www.erbicol.ch

